
VM Internal Object Pools

Motivation

Virtual machines are used by many programming languages in order to
provide system independence, automatic memory management and
other functions. Compared to languages that do not require a virtual
machine nor utilize automatic memory management, performance is still
a key disadvantage.

Research in virtual machines often aims to close this gap by either
improving allocation, memory management, heap structure or parallel
execution.

The approach presented aims to improve execution time by creating a
pool of allocated objects of a certain class. Those instances are
provided to the user application and reclaimed again before they are
collected by the garbage collector.

Background

The object pool is a frequently used software engineering pattern, which
is most useful when the creation and deletion of an object is more costly
than keeping it alive until it can be used again. Most known examples
are the thread pool and database connection pool. Both these
resourses are very costly to create. Whenever a pool object is needed,
the developer requests an instance and has to return it once its work is
finished.

The cost for using the pattern adds additional complexity, which is
usually avoided by using automated memory management. Developers
have to request objects and return them to the pattern. If the developer
fails to do so, the object might be lost and the application could run into
a deadlock.

Problem

In order to create objects pools based on classes within the VM, three
parts have to be changed: vm start-up. the allocator and the garbage
collector.

The startup has to be changed to include an initialization phase for the
object pools. The data structures have to be created and prepared to be
able to handle pool operations during execution time. The allocation
process has to detect allocations of pooled classes and redirect the
requests to the object pool data structures.

The main problem of the project is located in the garbage collector. As
memory is reclaimed, garbage collectors traverse live objects and
evacuate them to another region before declaring the collected region as
free. Unreferenced objects are never touched. In order to reclaim objects
that have to be returned to the pool, an additional stage has to be
introduced.

Proposed Solution

The solution under development includes a dynamically growing pool,
which is populated during run time. The pool pattern is to be completely
integrated into the VM and to be activated by the user using the
command line. The parameters of the object pool is a list of classes and
the pool size.

During startup, a table of potential objects is created, which is capable of
holding the maximum number of object instances. In order to save time,
objects are not allocated during start up. Instead, the pool is filled with
objects as the user application requests more and more instances.
Pooled objects used by the user application are kept in a separate data
structure, which is used to determine when objects can be reclaimed
before regions are marked as free. The changes to the GC flow are
shown below.

Konstantin Nasartschuk / Aleksandar Micic / Kenneth B. Kent
University of New Brunswick, IBM Canada

Faculty of Computer Science

kons.na@gmail.com / aleksandar_micic@ca.ibm.com / ken@unb.ca

Object Pool Flow

Collect Region Return

Evacuate Live 
Objects

Mark Region as 
Free

Traverse Active 
Pool Objects

In Current 
Region?

Reclaim Object


